

Note: Slides complement the discussion in class

Subgraphs & Trees They are also graphs

Table of Contents

Depth-First Search (DFS) Traverse by branches

Breadth-First Search (BFS)

Traverse by levels

. . .

They are also graphs

4

•••

Subgraph (of a graph): a graph made up of a subset of the vertices of G and a subset of the edges of G.

Subgraph (of a graph): a graph made up of a subset of the vertices of G and a subset of the edges of G.

Spanning Subgraph (of a graph): a subgraph that includes all vertices of *G*.

E.g., $S = \{\{U, V, W, X, Y, Z\}, \{a, b, c, d, e, g, h\}\}$

Spanning Subgraph (of a graph): a subgraph that includes all vertices of *G*.

E.g., $S = \{\{U, V, W, X, Y, Z\}, \{a, b, c, d, e, g, h\}\}$

Connected Graphs

A **connected graph** is a graph where there is a path from every vertex to every other vertex.

Connected Graphs

A **connected graph** is a graph where there is a path from every vertex to every other vertex.

A **connected component** of a graph *G* is a maximal connected subgraph of *G*.

Let's Revisit Trees

A **tree** is an undirected graph *T* such that:

- *T* is connected
- T has no cycles (acyclic)

Let's Revisit Trees

A **tree** is an undirected graph *T* such that:

- T is connected
- T has no cycles (acyclic)

A forest is an undirected graph without cycles (i.e., one or more trees).

The connected components of a forest are trees.

Spanning Tree

A **spanning tree** of a connected graph *G* is a subgraph of *G* that is a tree.

Spanning Tree

A **spanning tree** of a connected graph *G* is a subgraph of *G* that is a tree.

Q: Given a graph G, is it possible to have more than one spanning tree? A: Yes, unless G is already a tree.

A **spanning forest** is a subgraph that is a forest.

OZ Depth-First Search (DFS)

. . .

Traverse by branches

15

. . .

Depth-First Search (DFS)

- A general technique for traversing a graph.
- Visits all the vertices and edges of a graph.
- Determines whether a graph is connected or not.
- Computes the connected components of a graph.
- Computes a spanning forest of a graph (spanning tree if the graph is connected).
- Useful as basis for solving other problems (e.g., finding a path between two vertices).

. . .

algorithm DFS(G(V, E), $s \in V$, T)

mark s as visited

for each w∈V adjacent to s do
 if w is not visited then
 insert (s,w) to T
 DFS(G, w)
 end if
end for

end algorithm

. . .

Recursive DFS

Iterative DFS

. . .

```
algorithm DFS(G(V, E), s \in V)
let S be an empty stack
S.push(s)
```

```
while S is not empty do
    u ← S.pop()
    if u is not visited then
        mark u as visited
        for each vertex w adjacent to u do
            S.push(w)
        end for
    end if
end while
```

end algorithm

. . .

. . .

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

0:	{3, 4}
1:	{2, 3}
2:	{1, 4}
3:	{0, 1}
4:	{0, 2}

DFS Analysis

- By the end of the algorithm, we visited all the nodes (|V|).
- We traverse every edge twice (2|E|).
- Total runtime with adjacency list representation: O(|V| + |E|).
- What happens if DFS ends, and we got at least one non-visited node?

Application: Finding a Path

Given a graph G(V, E), a source vertex $v \in V$, and a destination vertex $w \in V$, determine if there is a path from v to w, and if there is, find the path.

Solution: Use DFS(G, v) and a stack S to keep track of the current path.

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

0:	{2, 1}
1:	{0, 3}
2:	{0, 3, 4}
3:	{1, 2}
4:	{2}

Application: Finding a Simple Cycle

Given a graph G(V, E), find a simple cycle.

Solution: Use DFS(G, v) and a stack S to keep track of the current path. Repeat until the DFS algorithm is complete, or until you encounter a back edge. Then, return the stack from that edge back to the first occurrence of the repeated vertex.

Fun Application: Mazes

U3 Breadth-First Search (BFS)

. . .

Traverse by levels

. . .

Given a graph G(V, E) and a source vertex $v \in V$, find the shortest path (if a path exists) to a target vertex $w \in V$.

Can we do this with DFS?

. . .

Breadth-First Search (BFS)

- A general technique for traversing a graph.
- Visits all the vertices and edges of a graph.
- It computes the distance (smallest number of edges) from a single vertex to each reachable vertex.
- For any vertex v reachable from u, the simple path in the BFS tree from u to v corresponds to a "shortest path" from u to v in the graph.

Breadth-First Search (BFS)

algorithm BFS(G(V, E), $s \in V$)

let Q be an empty queue
let edgeTo be an array of size |V|
mark s as visited
Q.enqueue(s)

while Q is not empty do
 u ← Q.dequeue()
 for all w adjacent to u do
 if w is not visited then
 mark w as visited
 Q.enqueue(w)
 edgeTo[w] ← u
 end if
 end for
end while

return edgeTo end algorithm

BFS Analysis

- By the end of the algorithm, we visited all the nodes (|V|).
- We traversed every edge twice (2|E|)
- Total runtime with adjacency list representation: O(|V| + |E|)
- edgeTo array contains the traversal of the graph.

DFS -vs- BFS

DFS

. . .

. . .

LIF0 style

Goes to the end of a path before coming back to an intersection

BFS

FIF0 style

Tries multiple paths, one edge at a time

48

· • •

