
Graph
Traversals

CS 251 - Data Structures
and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
They are also graphs
Subgraphs & Trees

Depth-First Search (DFS)
Traverse by branches

Breadth-First Search (BFS)
Traverse by levels

01

02

03

3

Subgraphs & Trees
01

They are also graphs

4

Revisit Subgraphs

Subgraph (of a graph): a graph made up of
a subset of the vertices of 𝐺 and a subset
of the edges of 𝐺.

E.g.,
𝑆 = { U, V, W, X, Y , {a, b, c, d, e, f, g}}

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

5

Revisit Subgraphs

Subgraph (of a graph): a graph made up of
a subset of the vertices of 𝐺 and a subset
of the edges of 𝐺.

E.g.,
𝑆 = { U, V, W, X, Y , {a, b, c, d, e, f, g}}

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

6

Revisit Subgraphs

Spanning Subgraph (of a graph): a
subgraph that includes all vertices of 𝐺.

E.g.,
𝑆 = { U, V, W, X, Y, Z , {a, b, c, d, e, g, h}}

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

7

Revisit Subgraphs

Spanning Subgraph (of a graph): a
subgraph that includes all vertices of 𝐺.

E.g.,
𝑆 = { U, V, W, X, Y, Z , {a, b, c, d, e, g, h}}

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

8

Connected Graphs

A connected graph is a graph where there
is a path from every vertex to every other
vertex.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

9

Connected Graphs

A connected graph is a graph where there
is a path from every vertex to every other
vertex.

A connected component of a graph 𝐺 is a
maximal connected subgraph of 𝐺.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

R

T

k

l

10

Let’s Revisit Trees

A tree is an undirected graph 𝑇 such that:
• 𝑇 is connected
• 𝑇 has no cycles (acyclic)

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

11

Let’s Revisit Trees

A tree is an undirected graph 𝑇 such that:
• 𝑇 is connected
• 𝑇 has no cycles (acyclic)

A forest is an undirected graph without
cycles (i.e., one or more trees).

The connected components of a forest are
trees.

U

V

X

W

Z

Y

a b

e

g

h

12

Spanning Tree

A spanning tree of a connected graph 𝐺 is
a subgraph of 𝐺 that is a tree.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

13

Spanning Tree

A spanning tree of a connected graph 𝐺 is
a subgraph of 𝐺 that is a tree.

Q: Given a graph 𝐺, is it possible to have
more than one spanning tree?
A: Yes, unless 𝐺 is already a tree.

A spanning forest is a subgraph that is a
forest.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

14

Depth-First Search (DFS)
02

Traverse by branches

15

Depth-First Search (DFS)

● A general technique for traversing a graph.

● Visits all the vertices and edges of a graph.

● Determines whether a graph is connected or not.

● Computes the connected components of a graph.

● Computes a spanning forest of a graph (spanning tree if the graph is connected).

● Useful as basis for solving other problems (e.g., finding a path between two vertices).

16

Recursive DFS

algorithm DFS(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉, 𝑇)

mark 𝑠 as visited

for each 𝑤 ∈ 𝑉 adjacent to 𝑠 do
if 𝑤 is not visited then

insert 𝑠, 𝑤 to 𝑇
DFS(𝐺, 𝑤)

end if
end for

end algorithm

17

Iterative DFS

18

algorithm DFS(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)
let 𝑆 be an empty stack
𝑆.push(𝑠)

while 𝑆 is not empty do
𝑢 ← 𝑆.pop()
if 𝑢 is not visited then

mark 𝑢 as visited
for each vertex 𝑤 adjacent to 𝑢 do

𝑆.push(𝑤)
end for

end if
end while

end algorithm

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

19

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

v

20

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

v

v

21

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

v

v

v

22

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

v

v

v

v

23

Show the DFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

v

v

v

v

v

24

DFS Analysis

● By the end of the algorithm, we visited all the nodes (𝑉).

● We traverse every edge twice (2 𝐸).

● Total runtime with adjacency list representation: 𝑂 𝑉 + 𝐸 .

● What happens if DFS ends, and we got at least one non-visited node?

25

Application: Finding a Path

Given a graph 𝐺(𝑉, 𝐸), a source vertex 𝑣 ∈
𝑉, and a destination vertex 𝑤 ∈ 𝑉,
determine if there is a path from 𝑣 to 𝑤,
and if there is, find the path.

Solution: Use DFS(𝐺, 𝑣) and a stack 𝑆 to
keep track of the current path.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

26

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

27

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

v

0

28

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

v
v

0
2

29

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

v
v

v

0
2
3

30

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

v
v

v

v

0
2
3
1

31

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0
2

0

1

2

34

v
v

v

v

32

Use DFS to find a path from vertex 0 to vertex 4 in the undirected graph below:

0: {2, 1}

1: {0, 3}

2: {0, 3, 4}

3: {1, 2}

4: {2}

0

1

2

34

v
v

v

v

v

0
2
4

33

Application: Finding a Simple Cycle

Given a graph 𝐺(𝑉, 𝐸), find a simple cycle.

Solution: Use DFS(𝐺, 𝑣) and a stack 𝑆 to
keep track of the current path. Repeat until
the DFS algorithm is complete, or until you
encounter a back edge. Then, return the
stack from that edge back to the first
occurrence of the repeated vertex.

U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

34

Fun Application: Mazes

35

Breadth-First Search (BFS)
03
Traverse by levels

36

Single-Source Shortest Path

Given a graph 𝐺(𝑉, 𝐸) and a source vertex
𝑣 ∈ 𝑉, find the shortest path (if a path
exists) to a target vertex 𝑤 ∈ 𝑉.

Can we do this with DFS?
U

V

X

W

Z

Y

a b

c e

d

f

g

i

h

j

37

Breadth-First Search (BFS)

● A general technique for traversing a graph.

● Visits all the vertices and edges of a graph.

● It computes the distance (smallest number of edges) from a single vertex to each
reachable vertex.

● For any vertex v reachable from u, the simple path in the BFS tree from u to v corresponds
to a “shortest path” from u to v in the graph.

38

Breadth-First
Search (BFS)

algorithm BFS(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let 𝑄 be an empty queue
let edgeTo be an array of size 𝑉
mark 𝑠 as visited
𝑄.enqueue(𝑠)

while 𝑄 is not empty do
𝑢 ← 𝑄.dequeue()
for all 𝑤 adjacent to 𝑢 do

if 𝑤 is not visited then
mark 𝑤 as visited
𝑄.enqueue(𝑤)
edgeTo[𝑤] ← 𝑢

end if
end for

end while

return edgeTo
end algorithm

39

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0

1

2

34

0 1 2 3 4

edgeTo

Q: {}

40

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

edgeTo

Q: {0}

0

1

2

34

v

41

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

0 0edgeTo

Q: {3, 4}

0

1

2

34

v

v v

42

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

3 0 0edgeTo

Q: {4, 1}

0

1

2

34

v

v v

v

43

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

3 4 0 0edgeTo

Q: {1, 2}

0

1

2

34

v

v v

v

v

44

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

3 4 0 0edgeTo

Q: {2}

0

1

2

34

v

v v

v

v

45

Show the BFS algorithm on the following undirected graph, starting at vertex 0.

0: {3, 4}

1: {2, 3}

2: {1, 4}

3: {0, 1}

4: {0, 2}

0 1 2 3 4

3 4 0 0edgeTo

Q: {}

0

1

2

34

v

v v

v

v

46

BFS Analysis

● By the end of the algorithm, we visited all the nodes (𝑉).

● We traversed every edge twice (2 𝐸)

● Total runtime with adjacency list representation: 𝑂 𝑉 + 𝐸

● edgeTo array contains the traversal of the graph.

47

DFS -vs- BFS

Tries multiple paths,
one edge at a time

Goes to the end of a
path before coming

back to an intersection

FIFO styleLIFO style

DFS BFS

48

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Next Slide = ∅
Do you have any questions?

49

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Graph Traversals
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Subgraphs & Trees
	Slide 5: Revisit Subgraphs
	Slide 6: Revisit Subgraphs
	Slide 7: Revisit Subgraphs
	Slide 8: Revisit Subgraphs
	Slide 9: Connected Graphs
	Slide 10: Connected Graphs
	Slide 11: Let’s Revisit Trees
	Slide 12: Let’s Revisit Trees
	Slide 13: Spanning Tree
	Slide 14: Spanning Tree
	Slide 15: Depth-First Search (DFS)
	Slide 16: Depth-First Search (DFS)
	Slide 17: Recursive DFS
	Slide 18: Iterative DFS
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: DFS Analysis
	Slide 26: Application: Finding a Path
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Application: Finding a Simple Cycle
	Slide 35: Fun Application: Mazes
	Slide 36: Breadth-First Search (BFS)
	Slide 37: Single-Source Shortest Path
	Slide 38: Breadth-First Search (BFS)
	Slide 39: Breadth-First Search (BFS)
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: BFS Analysis
	Slide 48: DFS -vs- BFS
	Slide 49: Next Slide = empty set

